University of Florida Homepage

Month: October 2017

The artist's rendering (left) of GRB 050709 depicts a gamma-ray burst that was discovered on 9 July, 2005 by NASA's High-Energy Transient Explorer. The burst radiated an enormous amount of energy in gamma-rays for half a second, then faded away. Three days later, Chandra's detection of the X-ray afterglow (inset) established its position with high accuracy. A Hubble Space Telescope image showed that the burst occurred in the outskirts of a spiral galaxy. This location is outside the star-forming regions of the galaxy and evidence that the burst was not produced by the explosion of an extremely massive star. The most likely explanation for the burst is that it was produced by a collision of two neutron stars, or a neutron star and a black hole.

Solving Cosmic Puzzles

Neutron stars are dead stars collapsed into the densest form of matter known to humans, with a teaspoon of neutron star matter weighing a billion tons, and their collision creates a swath of galactic debris. Decades ago, stargazing scientists formed plans to detect signals from this debris. Now, in the new era of aptly named “multi-messenger astronomy,” two international projects have achieved this goal: On August 17 of this year, the Laser Interferometer Gravitational-Wave Observatory (LIGO)’s two U.S.-based interferometers and the Virgo Collaboration’s Italy-based interferometer detected for the first time gravitational waves — ripples in space-time traveling at the speed of light — from the collision and subsequent merger of two neutron stars. The detection occurred just three days after yet another “chirp” from colliding black holes.